

UGC-Non-SAP, DST-CURIE and DST-FIST Assisted

DEPARTMENT OF BIOTECHNOLOGY

Curriculum Framework and Syllabus for M.PHIL BIOTECHNOLOGY

(For the candidates to be admitted from the academic year 2021-2022 onwards)

(UNDER CHOICE BASED CREDIT SYSTEM- CBCS)

MOTHER TERESA WOMEN'S UNIVERSITY, KODAIKANAL Department of Biotechnology

M.Phil. Biotechnology

Eligibility	: Master degree in the relevant discipline with 55% marks
Common Entrance Exam	: University conduct a Common Entrance Test (CET)
	for M.Phil admission

M.Phil. Biotechnology syllabus 2021-2022

No	Paper Code	Course Title	Hours	Credits	Continuous Internal Assessment (CIS)	End Semester Exam (ESE)	Total
		Se	mester I				
1.	M21BTT11	Core I -Research Methodology	10	STATU	40	60	100
2.	M21BTT12	Core II - Advances in Applied Biotechnology	10	4	40	60	100
3.	M21PST13	Core III - Professional Skills		4	40	60	100
		Total A	30	.12 0			300
		Ser	nester II				
4.	M21BTT21	Core IV -Special Paper	. 10	645	40	60	100
5.	M21BTD21	Dissertation & Viva-voce	20	14	-	-	200
		Total	N30EN	18			300
		Total	60	30			600

Special Papers related to Project

S.No	Course
1.	Special Paper I – Nanotechnology
2.	Special Paper II - Animal Biotechnology
3.	Special Paper III- Plant Biotechnology
4.	Special Paper IV – Environmental Biotechnology
5.	Special Paper V – Applied Microbiology
6.	Special Paper VI- Fungal Biotechnology
7.	Directed Study [#]
8.	Any UGC approved online course related to research (equal credit)

[#]Any new course can be added as special paper by getting permission from BoS and Academic council.

The M.Phil course consists of four theory papers. Paper III is common for all the programmes. Special Paper (IV) is pertaining to the area of specialization chosen by the candidate with the approval of guide.

Each candidate will submit a dissertation on a topic in the relevant discipline after carrying out the project work under the supervision of a guide. The duration of the project work will be for six months.

The dissertation will be evaluated by an external examiner and viva voce will be conducted for the candidate.

The examination will be for 100 marks in each of the theory papers. The question paper will cover the entire syllabus. The duration of the examination is 3 hours.

PROGRAMME EDUCTION OUTCOMES (PEO)

- **PEO 1:** To equip the students to be competent in the field of biotechnology and its allied areas
- **PEO 2** : To inculcate the capability to work as entrepreneurs, techno-managers and researchers with strong ethics and communication skills
- **PEO 3:** To encourage the students to pursue research in reputed institutes at national and international level
- **PEO 4:** To cultivate working knowledge in students to develop biotechnology products, processes and designs.
- **PEO 5:** To encourage the students to work as research associates under government funded projects to contribute scientifically to the society

PROGRAMME SPECIFIC OUTCOMES (PSO)

- **PSO1:** Enhance the knowledge in the advanced techniques in Biotechnology.
- **PSO2:** Develop theoretic and hands-on knowledge inmolecular biology, genetic engineering and bioinformatics for gaining a successful career
- **PSO3:** Translate the knowledge obtained from the programme to work as women entrepreneurs and identify novel solutions for scientific problems
- **PSO4:** Effectively use computational techniques for all activities related to biotechnology and other life science fields
- **PSO5:** Laboratory skills and hands on training in advanced and recent techniques along with knowledge in research methodology in biotechnology perceived will aid in research.

PRAGRAMME OUTCOMES (PO)

- **PO1:** Apply the knowledge of molecular biology, genetic engineering, bioinformatics, food technology and computational biology to solve complex scientific problems.
- **PO2:** Use research-based knowledge including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO3:** Create, select, and apply appropriate techniques, resources, and modern biotechnology and bioinformatics tools including structure prediction and modelling to complex activities with an understanding of the limitations.

- **PO4**: Function effectively as an individual, and as a member or leader in teams, and in multidisciplinary settings.
- **PO5:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the scientific practice.
- **PO6:** Communicate effectively with the scientific community and with society at large. Be able to comprehend and write effective reports documentation. Make effective presentations, and give and receive clear instructions
- **PO7:** Demonstrate knowledge and understanding of biotechnology and research principles and apply these to one's own work, as a member and leader in a team.
- **PO8:** Recognize the need for, and have the preparation and ability to engage in independent and lifelong learning in the broadest context of technological change.

Course	CORE I - RESEARCH METHODOLOGY - M21BTT11											
Little &												
Semester		Semester-I	Credits 4	Hours/weeks: 10								
Cognitive	K1: R	ecall	Cicuits.4									
Level	K2:Understand											
	K3:Apply											
	K4:Co	K4:Compare										
Learning		• To gain familiarity with resea	arch and its types.									
Objective		• To learn the appropriate method	ods of literature c	ollection and analysis								
		• To understand data validation	and interpretation	n								
		• To apply suitable statistical ar	alysis and tools in	n research.								
~		To inculcate interest in studen	ts to pursue resea	.rch.								
Course	At the	end of the course, the student will	be able to									
Outcomes	COI	know types of research and its in	nportance, resear	ch KI,KZ								
	CO2	apply the Statistics in Research u	sing different	K3								
	02	statistical tools	sing unrerent	KJ								
	CO3	understand the principles and pro-	cedures of	K2,K3								
		bioinstruments foranalysis of bion	nolecules									
	CO4	understand the different types of F	CRE lectrophores	sis: K3								
	CO5	compare the Database similarity so nucleicacid and proteins	earching tools for	K4								
Unit I	Resear	ch : Types of research, Role of lit	terature review in	research, Importance of								
	formul	ating a research problem. Collec	ction and display	ring of data. Writing a								
	researc	h report. Importance and need for	r research ethics	and scientific research.								
	writing	g Thesis, publication, writing	article, Plagiaris	sin, Research Proposal								
Unit II	Statist	ics in Research: Measures of ce	ntral tendency: a	rithmetic mean median								
Cint II	mode,	geometric mean, Harmonic mean, M	Measures of dispe	rsion: range, interquartile								
	range,	standard deviation, variance. Si	mple linear reg	ression and correlation.								
	Analys	is of variance. Hypothesis testing	- Idea of two typ	bes of errors and level of								
	signific	cance. Tests of significance: Par	rametric (F & t	test); Non parametric:								
Unit III	Chisqu Dring	are tests	ad for analysis a	f higher atmost								
	[IIV visi	ble FTIR XRD SEM and TEM	TLC HPTIC	HPLC GC-MS Atomic								
	absorpt	tion and plasma emission spectro	oscopy, Nuclea	ar Magnetic Resonance								
	Spectre	oscopy. MALDI-TOF-TOF.	- T J ?									
Unit IV	Electro	ophoresis: Principle and applic	ations of Nativ	e, SDS, and 2D- gel								
	electro	phoresis. Polymerase Chain reaction	on(PCR) - Princi	iples and Types - Real-								
	Time F	PCR (quantitative PCR or qPCR) R	Reverse-Transcript	tase (RT-PCR), Multiplex								
	PCR, I	Nested PCR, Hot Start PCR,GC-R	lich PCR, Long-r	ange PCR and Arbitrary								
	Primed	PCK. Applications of PCK.										

M.PHIL BIOTECHNOLOGY MTWU SYLLABUS 2021 ONWARDS

Unit V	Database similarity searching - BLAST – BLASTN and BLASTP, Gene sequence											
	submission format - FASTA, multiple sequence alignment (CLUSTAL W),											
	Phylogenetic analysis tools- Phylip, ClustalW, Online phylogenetic analysis.											
	/isualisation of protein structure – (Ras Mol, Cn3d, SWISS – PDB viewer).											
References	Text Books											
	1. Akash Ved. Biostatistics & Research Methodology. Publisher Thaukur											
	Publication, 2019.											
	2. Selzer, Paul M., Marhofer, Richard J., Koch, Oliver. An Introduction											
	Applied Bioinformatics, Springer, 2018.											
	3. L. Veerakumari. Bioinstrumentation. MJP Publishers. 2011.											
	References Books											
	1. Dubey Diwedi, Usman, Srivastava. Biostatistics and Research											
	Methodology.Publisher S VikaS and Company, 2019											
	2. MJ Reily. Bioinstrumentation. CBS Publishers & Distributors, 2019.											
	3. B Annadurai. A Textbook of Biostatistics. Publisher New Age											
	International Private Limited, 2017.											
	4. Selzer, Applied Bioinformatics: An Introduction, Publisher Springer,											
	2018.											
	5. Norman T.S. Bailey, Statistical Methods in Biology. Cambridge University											
	Press, UK. 2012											
Е-	1. https://www.allassignmenthelp.com/blog/types-of-research/											
reference	2. https://www.bioinformatics.org/											
links:	3. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1122955/											
	4. https://www.csulb.edu/~msaintg/ppa696/696stsig.htm											
	5. https://www.enago.com/academy/importance-of-research-ethics/											

Mapping of COs with POs & PSOs:

CO	POSTRUM							PSO					
	1	2	3	4	5	6	7.5	8	1	2	3	4	5
CO1	S	S	S	S	SOAL	ASOME	S	S	Μ	М	Μ	Μ	М
CO2	S	S	S	S	S	S	S	S	Μ	Μ	Μ	Μ	S
CO3	S	S	S	Μ	М	S	S	S	S	S	S	S	S
CO4	S	S	S	Μ	М	S	S	S	S	S	S	S	S
CO5	S	S	S	Μ	Μ	S	S	S	S	S	S	S	S

2

Strongly Correlating (S) - 3 marks; Weakly Correlating (W) - 1 mark; Moderately Correlating (M) - 2 marks No Correlation(N) - 0 mark

Course	CORE II- ADVANCES IN APPLIED BIOTECHNOLOGY- M21BTT12-												
Title &	M21BTT11												
Code			1										
Semester		Semester-I	Credits:4	Hours/weeks: 10	0								
Cognitive	K1: Recal	l K2:Understand	K3:Apply										
Level													
Learning	• To	• To introduce the students to advanced and modern techniques in											
Objective	biotechnology												
	• To	gain knowledge on cutti	ng edge technologies f	for future research.									
	• To	learn the principles	and mechanisms be	hind the new trend	ls in								
	bio	technology.											
	• To	assure that the st	udents will know	up-to-date technolo	gical								
	adv	ancements on the compl	letion of the course.										
Course	At the end	of the course, the studen	t will be able to										
Outcomes	CO1	gain knowledge mode	ern techniques in pla	int and K1,K2									
		animal technology	3	· 1									
	CO2	learn about the advance	ed tools in molecular l	biology K2									
		and genetic engineering		1.1. 170									
	03	CO3 acquire knowledge on nano-formulations and their K2											
		applications in cancer t	neranostics										
	CO4	illustrate the methods	to develop biomateria	als and K2, K3	'								
	CO5	bio-products		na and V2									
	05	gain knowledge on ney	t generation sequence	ing and K 2									
Unit I	Plant and	Animal Biotochnology	w: Introduction to 1	Modern plant and an	nimal								
Unit I	biotechnol	ogy CRISPR/Cas genot	gy. Infounction to I	s techniques applicat	tions								
	in plant an	d animals systems Deve	elopment of climate si	nart and mineral enha	inced								
	aerobic cro	on varieties Stem cells-	research controversy	and future applications	s. 3D								
	printed or	gans. Brian signals to au	udible speech and ner	ve regeneration. Trend	ds in								
	the use of	tissue and animal culture	applications and futu	re prospects.									
Unit II	Molecular	biology and Genetic	manipulation: Mo	blecular biology tools	s for								
	engineerin	g biosynthetic gene cl	lusters, enzymes and	l host genomes. Cel	llular								
	mechanose	ensing and peizo prote	ins. Multiplex autom	nated genome engined	ering								
	(MAGE),	promoter engineering an	d synthetic small regu	latory RNA (sRNA)-b	based								
	knockdow	n. Advanced molecular	markers, promoter e	engineering and metal	bolic								
	engineerin	g. Genetic modification	of animals for food	and medicine. 3D gen	nome								
	folding and	d programmable RNA ed	liting in microbes.										
Unit III	Nanobiote	echnology and Cancer (theranostics: Introduc	ction to nanobiotechno	ology								
	and Onco	ology. Current convent	tional diagnosis and	therapeutics in car	ncer.								
	Nanopartic	eles in targeted there	anostics. Liposomal	nanoparticles, Mice	elles,								
	Dendrimer	s, Carbon nano-systems	s, Polymeric nanopart	icles, DNA nanostruc	tures								
	and metal	nanoparticles in cancer t	heranostics. Nano-for	mulations and their us	es in								
	cancer the	ranostics. Future applic	ations and challenges	s of nanobiotechnolog	gy in								
	cancer diag	gnosis and treatment.											

Unit IV	Food and Bioprocess technology: Recent trends in food processing: High
	hydrostatic pressure, Dielectric heating, Pulsed light, Bacteriocins, Microwave and
	Ultrasound assisted extractions, Super critical fluid extraction. Development of
	biomaterials and bioproducts: Biopolymers and biopackaging. Bioprocess
	designing: Operational fermentation strategies, intracellular products, extracellular
	products, Process analysis. Applications of synthetic biology and Bioinformatics in
	foods and bioprocess industries
Unit V	Bioinformatics and Computational Biology: Introduction to Next generation
	sequencing and sequence analysis, data mining biological and medical ontology.
	Latest bioinformatics tools in proteomics, genomics, transcriptomics and
	metabolomics analysis. Algorithmic approaches for molecular biology problems,
	Biclustering algorithms for microarray data, Genotype tagging, In silico simulation
	approach. Computational methods for understanding bacterial and archaea
	genomes. Application of fuzzy logic in bioinformatics. Future of bioinformatics and
	computational biology in modern medicine.
References	Text Books
	1. Suresh Kumar Gahlawat, Joginder Singh Duhan, Raj Kumar Salar,
	Priyanka Siwach ,Suresh Kumar, Pawan Kaur, Advances in Animal
	biotechnology and its applications, Springer Singapore. 2018
	2. Gautam B.Singh, Fundamentals of Bioinformatics and Computational
	biology, Springer International publishing, 2015
	References Books
	1. Y. B. Blume, Research advances in Plant biotechnology Nova Science
	publishers Inc. 2020
	2. Bernard R. Glick, Cheryl L. Patten. Molecular Biotechnology: Principles
	and Applications of Recombinant DNA, 2017
	3. Anshu Mathur, Nanotechnology in cancer, Elsevier, 2016
	4. Monica Lizeth Chavez-Gonzalez, Nagamani Balagurusamy, Christobal N.
	Aguilar, Advances in Food bioproducts and bioprocessing technologies,
	CRC Press. 2019
E-	1. https://www.nature.com/articles/s41392-019-0089-y
reference	2. https://www.tandfonline.com/doi/pdf/10.1080/02648725.1989.10647858
links:	3. https://www.genscript.com/applications-of-synthetic-biology-in-food-
	industry-and-agriculture.html
	4. https://www.cbd.int/doc/publications/cbd-ts-82-en.pdf

CO	РО								PSO				
	1	2	3	4	5	6	7	8	1	2	3	4	5
CO1	S	S	S	Μ	S	S	S	S	S	S	S	S	S
CO2	S	S	S	Μ	S	S	S	S	S	S	Μ	S	S
CO3	S	S	S	Μ	S	S	S	S	S	S	Μ	S	S
CO4	S	S	S	Μ	S	S	S	S	S	S	Μ	S	S
CO5	S	S	S	Μ	S	S	S	S	S	S	Μ	S	S
Strong	Strongly Correlating (S)- 3 marks: Moderately Correlating (M) - 2 marks												

Weakly Correlating (W) - 1 mark;No Correlation(N)- 0 mark

M.PHIL BIOTECHNOLOGY MTWU SYLLABUS 2021 ONWARDS

Course Title &		CORE III – Professional Skills- M21MBT13											
Code													
Semester		Semester- I	Credits:4	Hours/weeks:	10								
Cognitive	K1: Recal	1		·									
Level	K2: Under	rstand											
	K3: Apply	I											
	K4:Analy	ze											
Learning	• I	Develop skills to ICT and	apply them in teaching	ing, learning contexts	s and								
Objective	research. Acquire the knowledge of communication skills with special reference to												
	• Acquire the knowledge of communication skills with special reference to its elements, types, development and styles												
	its elements, types, development and styles.												
	• Understand the terms: Communication technology, Computer Mediated												
	 Develop different teaching skills for putting the content across to 												
	• Develop different teaching skins for putting the content across to targeted audience.												
Course	Upon com	pletion of this course the	students will be able	e to									
Outcomes	CO1	Learn the computer basi	cs and its application	n in science field.	K1								
	CO2	Develop the communica	tion skills in both Ei	nglish and tamil.c	K2								
	CO3	Impart knowledge on co	mputer mediated tea	ching.	K3								
	CO4	Understand the basic con	ncepts of micro teacl	hing skills.	K2								
	CO5	Get familiar with basics	of industrial technol	ogy	K2								
Unit I	Computer	Application Skills: Fundation	amentals of Compute	ers and windows,									
	Operating	System – MS – Office Co	omponents; Word: E	equation editor, Table	e								
	Manipulat	ion – Formatting Features	s – organizational Ch	hart. MS – EXCEL:									
	Statistical	Functions – Number Mar	nipulation – Chart Pr	eparation with vario	us								
	types of g	raphs. MS Powerpoint: Po	owerpoint presentation	on with multimedia	h								
	search end	rines	S. E-mail and attach	ments – working wit	11								
Unit II	Communi	cation Skills (English/Ta	mil/Both): English:	Skills of Communi	cation:								
	Listening.	Speaking, reading and	Writing – Writing	g Synopsis. Abstra	ct and								
	proposals.	Developing good lang	guage asbilities – H	Public speaking – V	Vriting								
	Skills. Ta	amil: gapw;Wtpf;Fk; jpy	wd; - Ngr;Rj;jpwd	; - ntspg;ghl;Lj; jp	owd; -								
	Ma;Tj;jpl;	lk; - Ma;Tr;R&ffk; jahhr	oj;jy;.		ŕ								
Unit III	Commun	ication technology: Con	mputer Mediated T	eaching: Multimedia	a, E –								
	Content, S	Satellite Based Commun	ication – EDUSAT	and ETV channels.	Web:								
	Internet I	Education.			1								
Unit IV	Pedagogi	cal Skills: Micro teaching	Skills: Skill of Indu	ction, Skill of Stimu	lus								
	variation.	Skill of Explaining, Skill	or proving Question	18, SKIII OF Blackboa	ra, c								
	writing an	u SKIII OF CIOSURE – Integ	gration of Teaching S	Skills – Evaluation of	L								
Unit V	Industria	I Technology · Lecture Te	chniques. Steps Dla	nning of a lecture I	ecture								
	Notes Un	dating. Delivery of Lecture	re. Teaching – Learr	ing Techniques. Tea	m								
L	110105, OP	aunig, Denvery of Leetu	ic. reaching Lean	ing reeninques. rea									

	teaching, Group Discussion. Seminar, Workshops, Symposium and Panel										
	Discussion – Games and Simulations – Web Based Instructions.										
Text Books	1. Micael D. and William (2000). Integrating Technology into Teachnig										
	and Learning: Concepts and Applications, Prentice Hasll, New York.										
	2. Information and Communication Technology in Education: A										
	Curriuculum for Schools and Programme of Teacher development.										
	Jonathan Anderson										
	3. Pandey S.K.(2005). Teaching communication. Commonwealth publisher,										
	Delhi										
	4. Sharma. R.A.(2006), Fundamentals of education technology, Surya										
	publication, Meerut										
References	1. Kum Babu A. and Dandapani S. (2006), Microteaching, Neelkamal										
	Publications, Hyderabad										
	2. Vanaja M and Rajasekhar S. (2006), Computer Education, Neelkamal										
	Publications, Hyderabad										
	\$11811OUB										

CO				PO			PSO						
	1	2	3	4 F	-5	6	2 S	8 .	1	2	3	4	5
CO1	S	S	S	Μ	S	Μ	S	S	S	S	S	S	S
CO2	S	S	S	S	Μ	S	S	S	S	Μ	S	S	S
CO3	S	S	S	Μ	Μ	S	S	S	S	S	S	S	S
CO4	S	S	S	M	M	S	S	$\mathbf{S} \geq$	S	S	S	S	S
CO5	S	S	S	SO	M	S	S.	So	S	Μ	S	S	S

Strongly Correlating Moderately Correlating Weakly Correlating No Correlation

(S) - 3 marks

(M) - 2 marks (W) - 1 mark

- 0 mark

Page 11

Course	CORE IV-SPECIAL PAPER I										
Title &	NANOTECHNOLOGY- M21BTT21										
Code	Somoston II Cuedita 4 II	Loung/moder 10									
Semester	Semester-II Credits:4 K1, D = - 1	lours/weeks: 10									
Lovel	K1:Kecall K2:Understand										
Level	To understand the fundamentals of nanotochnology										
Objective	 To understand the fundamentals of hanotechnology To know score and importance of group papareticles 										
Objective	• To know scope and importance of green hanoparticles										
	 To know the applications of hanotechnology in biology To gain knowledge in molecular devices and papetribology 										
	• To gain knowledge in molecular devices and nanotribology										
Course	• 10 learn the theranostic applications of nanomedicines										
Course	At the end of the course, the student will be able to	V1 V2									
Outcomes	nanoparticles	K1,K2									
	CO2 learn about different methods used in the	K1 K7									
	characterization of nanoparticles	111,112									
	CO3 gain knowledge on the different applications of	K2									
	nanoparticles	112									
	CO4 understand the development nanomedicines and	K1 K2									
	nanosystems	11,112									
	CO5 acquire knowledge on molecular nano-devices and	K2									
	nanotribology										
Unit I	Synthesis of Nanoparticles: Use of bacteria, fungi, actinomyc synthesis, Magnetotactic bacteria for natural synthesis of ma Mechanism of formation, Virus as a components for nanostructured materials. Synthesis of silver and gold nanopart in nanoparticle synthesis.	Synthesis of Nanoparticles: Use of bacteria, fungi, actinomycetes for nanoparticle synthesis, Magnetotactic bacteria for natural synthesis of magnetic nanoparticle, Mechanism of formation, Virus as a components for the formation of nanostructured materials. Synthesis of silver and gold nanoparticles. Role of plants in nanoparticle synthesis									
Unit II	Analysis of Nanoparticles: Nanoscience in Nano materials gold, iron and copper. Characterization – UV-Visible Spectro FTIR, SEM-EDAX, TEM.	preparation silver, ophotometer, X-RD,									
Unit III	NanoBiology: DNA based computation, DNA based nanon Interaction between biomolecules and nanoparticle surface, inorganic materials used for the synthesis of hybrid nan Application of nano in biology, Nanoprobes for analytical appli	mechanical devices, Different types of no bio assemblies, cation.									
Unit IV	Nanomedicines : Developing of Nanomedicines. Nanosystems nanodrug administration. Nanotechnology in diagnostic applica in diagnostic and therapeutic applications- Molecular Nanomec	in use. Protocol for tions, materials used hanics.									
Unit V	Nanotribiology: studying tribiology at nanoscale, Nanotrib Current status of Nano Biotechnology, Future perspective Nanosensors.	iology applications. es of Nanobiology.									
References	Text Books										
	 Kulkarni, Sulabha K.Nanotechnology: Practices,Springer,2015 Thomas Varghese & K.M. Balakrishna, nanotechnology: A synthesis, properties and applications of nanomaterials, Pull 	Principles and an introduction to blisher									

	M.PHIL BIOTECHNOLOGY MTWU SYLLABUS 2021 ONWARDS
	Atlantic,2012
	References Books
	1. Ashutosh Tiwarianthony P.F. Turner, Biosensors Nanotechnology, Wiley, 2014
	2. Sulabha K. Kulkarni, Nanotechnology: Principles and Practices, Publisher
	Springer nature,2014
	3. Sulabha K. Kulkarni, Nanotechnology: Principles and Practices, Springer, 2015
E-	1. https://www.tandfonline.com/doi/full/10.1080/24701556.2020.1835978
reference	2. https://www.tribonet.org/wiki/nanotribology/
links:	3. https://royalsocietypublishing.org/doi/10.1098/rsta.2007.2170
	4. https://pubs.acs.org/doi/abs/10.1021/nn2031319

and the second sec														
CO	POST WOOTH LOU								PSO					
	1	2	3	4	25	6	7	8	1	2	3	4	5	
CO1	S	S	S	SS	M	M	S	S	S	S	Μ	S	S	
CO2	S	S	S	S	Μ	M	S	S	S	S	Μ	S	S	
CO3	S	S	S	M	Μ	Μ	S 🔁	SE	S	Μ	Μ	Μ	Μ	
CO4	S	S	S	M	M	M	S	S G	S	Μ	Μ	Μ	Μ	
CO5	S	S	S	Μ	Μ	M	S	S	S	Μ	Μ	Μ	Μ	

Strongly Correlating (S)- 3 marks; Weakly Correlating (W) - 1 mark;

Moderately Correlating (M) - 2 marks No Correlation(N) - 0 mark

MOTHER TO BE TO BUD 1

Course	CORE IV-SPECIAL PAPER II											
Title & Code		ANIMAL BIOTECH	INOLOGY- M21B	ГТ21								
Semester		Semester-II	Credits:4	Hours/weeks: 10								
Cognitive	K1:Re	ecall										
Level	K2:Understand											
	$\mathbf{K3: A}_{]}$	pply										
Learning	• To acquire knowledge on the fundamentals of animal biotechnology											
Objective	•	 To acquire knowledge on the fundamentals of animal biotechnology To learn about animal cell culture techniques 										
Objective	•	To sain knowledge on the development and maintenance of animal call										
	•	i o gam knowledge on the development and maintenance of animal cell lines										
	•	 To understand the principles of transgenics and stem cell biology 										
	•	To know the various applications	s of animal biotechn	ology								
Course	At the	end of the course, the student will	be able to	0,								
Outcomes	CO1	know the basics of cell culture la	boratory and its	K1								
		equipment	E.									
	CO2	gain knowledge on the preparation	on of cell culture	K2,K3								
	~ ~ ~	media and reagents	4 45 A									
	CO3	understand the techniques in dev	eloping and maintai	n K2								
	~~ · · ·	cell cultures										
	CO4	acquire knowledge on the differe	ent application of	K1								
	CO5	compare the methods and strates	vies in transgenics a	nd K4								
	000	stem cell biology										
Unit I	Cell cu	llture Laboratory design & Equi	oments: Planning, co	onstruction and services;								
	Layout	; Sterile handling area; Incubation	; Hot room; Air cir	culation; Service bench;								
	Lamina	ar flow; Sterilizer; Incubator; C	O ₂ incubator; Ref	rigerators and freezers;								
	cooling	uge, inverted stage incroscope, wi	bath: Autoclayes a	d hot air oven. Pinette								
	washer	s; Water purification system; Flu	id handling systems	and other equipments;								
	Washir	ng, packing and sterilization of dif	fferent materials use	d in animal cell culture;								
	Aseptic	c concepts; Maintenance of sterility	; Cell culture vessels									
Unit II	Cell cu	Ilture Media and reagents: Types	s of cell culture med	ia; Ingredients of media;								
	Tempe	rature: Surface tension and forming	or Balance salt solut	g, Oxygen; Osmolarity;								
	suppler	nents: Foetal bovine serum: Serun	n free media: Trvns	in solution: Selection of								
	mediur	n and serum; Conditioned media;	Other cell culture r	eagents; Preparation and								
	steriliz	ation of cell culture media, serum a	nd other reagents.	-								
Unit III	Differe	ent types of cell cultures: History	of animal cell culture	; Different tissue culture								
	techniq	lues; Types of primary culture; Chi	cken embryo fibrobl	ast culture; Chicken liver								
	lines S	mey culture; Secondary culture; Ir Suspension culture: Organ culture	ypsinization; Cell se	baration, Continuous cell								
	divisio	n, growth pattern, metabolism of es	stimation of cell num	ber; Development of cell								
	lines; (Characterization and maintenance	of cell lines, stem	cells; Cryopreservation;								
	Comm	on cell culture contaminants.										

Unit IV Unit V	 Cell culture Applications: Cell cloning and selection; Transfection and transformation of cells; Commercial scale production of animal cells, stem cells and their application; Application of animal cell culture for <i>in vitro</i> testing of drugs; Testing of toxicity of environmental pollutants in cell culture; Application of cell culture technology in production of human and animal viral vaccines and pharmaceutical proteins Transgenesis and Stem cell biology: Transgenic animal production; Methods of transgene delivery; Integration of foreign genes and their validation; Gene targeting; 										
	Methods and strategies; Improving transgene integration efficiency; Cell lineages and										
	developmental control genes in drosophila and mice; Differentiation of germ layers;										
	Cellular polarity; Stem cell differentiation; Blood cell formation; Fibroblasts and their										
	differentiation; Differentiation of cancerous cells and role of proto-oncogenes; Stem										
	SCNT: Transgenesis and Xenotransplants										
References	Text Books										
Kererences	1 A K. Srivastava, RK Singh Animal Biotechnology, CBS Publishers &										
	Distributors Pvt Ltd. India 2018.										
	2.M. M. Ranga. Animal Biotechnology, 3 rd Edition, Agrobios, India. 2017.										
	3.B. Singh, S.K. Gautam, Textbook of Animal Biotechnology, Publisher The										
	Energy and Resources Institute, TERI,2013										
	References Books 7										
	1. Birbal Singh, Gorakh Mal, Sanjeev K. Gautam, Manishi Mukesh. Advances in Animal Biotechnology, Springer, 2019.										
	2. Singh, B., Mal, G., Gautam, S.K., Mukesh, M. Advances in Animal Biotechnology Publisher Springer 2019										
	3 Rodrigues Gabriela Roelen Bernard A. I. Concepts and Applications of Stem										
	Cell Biology, Publisher Springer,2020.										
Е-	1. https://www.microscopemaster.com/cell-culture.html										
reference	2. https://www.labome.com/method/Cell-Culture-Media-A-Review.html										
links:	3. https://pubmed.ncbi.nlm.nih.gov/7711194/										
	4. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2777739/										
	SA WOMEN										

CO	РО									PSO					
	1	2	3	4	5	6	7	8	1	2	3	4	5		
CO1	S	S	S	S	S	S	S	S	S	S	S	Μ			
CO2	S	S	S	Μ	S	Μ	S	S	S	S	S	Μ			
CO3	S	S	S	Μ	S	Μ	S	S	S	S	Μ	Μ			
CO4	S	S	S	Μ	S	Μ	S	S	S	S	Μ	Μ			
CO5	S	S	S	Μ	S	Μ	S	S	S	Μ	Μ	Μ			

Strongly Correlating (S)- 3 marks; Weakly Correlating (W) - 1 mark;

Moderately Correlating (M) - 2 marks No Correlation(N) - 0 mark

Course	CORE IV-SPECIAL PAPER III											
Title &		PLANT BIOTECH	NOLOGY- M21B	STT21								
Code		Comercia II	Care liter 4	II								
Semester		Semester-II	Credits:4	Hours/weeks: 10								
Level	K1:Recall K2:Underst	and										
	112 . Chucist											
Learning	• To le	arn the fundamentals of pla	nt biotechnology									
Objective	• To ac	cquire knowledge on gene tr	ansfer techniques									
	• To u	nderstand the techniques in	maintain and pres	erving plant tissue culture								
	• To learn the Biosafety issues and bioethics in plant genetic engineering											
	• To ga	To gain knowledge in Intellectual property rights										
Course	At the end of	f the course, the student will	be able to									
Outcomes	CO1 know	v about the principles of cul	ture techniques,	K1,K2								
	micr	opropogation and cryoprese	rvation									
	CO2 gain	knowledge on gene transfer	technique and the	eir K2								
	CO3 unde	rstand the processes in the c	levelopment of	K1.K2								
	phar	maceutically important plan	t products									
	CO4 learn	about the biosafety issues a	and bioethics in pl	ant K2								
	engi	neering										
	CO5 acqu	ire knowledge on Intellectua	al property rights a	and K1,K2								
	pater	nting of biological material										
Unit I	Plant Tissu	e Culture: Historical per	spective, tissue o	culture lab. Organization,								
	and protopl	ast cultures role of ph	vtohormones or	anogenesis and somatic								
	embryogenes	sis. Artificial seed production	on; Micropropagat	ion; Mutation, somaclonal								
	variation, Ge	rmplasm conservation and cr	yopreservation.	, ,								
Unit II	Agrobacteri	um-plant interaction: Ti a	nd Ri plasmids. (Gene transfer techniques -								
	vector media	ted and vector less gene tran	nsfer. Agrobacteriu	im-mediated gene transfer;								
	Cointegrate a	and binary vectors and their	r utility; Screenab	le and selectable markers;								
	Bacterial res	sistance. Viral resistance. I	nsects and pathor	ess Resistance. Herbicide								
	resistance; D	rought, salinity and thermal s	tress.									
Unit III	Plants as Bi	ofactories: Fermentation an	d production of in	dustrial enzymes, vitamins								
	and antibiotic	cs and other biomolecules; se	condary metabolite	e production; Production of								
	pharmaceutic	cally important compounds; E	Bioenergy generation	on.								
Unit IV	Biosafety iss	ues and containment practi	ces: Testing of tran	nsgenics, regulatory								
T T • 4 T T	procedures to	or commercial approval. Bloe	thics of plant gene	tic engineering.								
Unit V	Intellectual	property rights (IPK): Pater	nts, trade secrets, c	opyright, trademarks; Plant								
	farmers right	s	i materiar, Plant t	needers rights (FBKS) and								
References	Text Books											
	1. S. U	mesha, Plant Biotechnology	. Publisher CRC P	Press.2019.								
	2. Hiru	Ranabhatt, Renu Kapor. Pl	ant Biotechnology	7. 1st Edition, Publiser								
		,, ,										

	M.PHIL BIOTECHNOLOGY MTWU SYLLABUS 2021 ONWARDS						
	WPI Publishing. 2018.						
	3. Chawla H S. Introduction To Plant Biotechnology. Publisher Oxford & IBH						
	publishing.2020.						
	References Books						
	1. Gresshoff Peter M. Plant Biotechnology and Development. Publisher:						
	Taylor & Francis Inc. 2020.						
	2. Abdin, M.Z., Kiran, U., Kamaluddin, M., Ali, A. Plant Biotechnology:						
	Principles and Applications, Publisher Springer. 2017.						
Е-	1. https://www.onlinebiologynotes.com/types-of-plant-tissue-culture/						
reference	2. https://www.vedantu.com/biology/micropropagation						
links:	3. https://microbenotes.com/micropropagation-stages-types-applications- advantages-limitations/						
	4. https://pubmed.ncbi.nlm.nih.gov/15310911/						

CO	PO SEQUA, 8									PSO					
	1	2	3	46/	5	6	75	8	1	2	3	4	5		
CO1	S	S	S	S	M	S	SZ	S	S	S	S	Μ	S		
CO2	S	S	S	S	Μ	S	S 🔁	S	S	S	Μ	S	S		
CO3	S	S	S	M	M	S	S S	S	S	S	Μ	Μ	S		
CO4	S	S	S	S	S	S	S	S	S	S	Μ	Μ	Μ		
CO5	S	S	S	Μ	S	S –	S	S	S	S	Μ	Μ	S		

Strongly Correlating (S)- 3 marks; Weakly Correlating (W) - 1 mark; No Correlation(N) - 0 mark M.PHIL BIOTECHNOLOGY MTWU SYLLABUS 2021 ONWARDS

Course	CORE IV-SPECIAL PAPER IV											
Title &	ENVIRONMENTAL BI	OTECHNOLOGY	- M21BTT21									
Code Semester	Semester-II	Credits:4	Hours/weeks• 10									
Cognitive	K1:Recall	Cicuits.4	110u15/ WCCR5: 10									
Level	K2:Understand											
	K3: Apply											
Learning	• To gain awareness about the gl	obal environmental	problems									
Objective	• To know about the water pollut	tion and the ways to	o control it									
	• To acquire knowledge on solid waste management and its implementations											
	• To obtain knowledge on Biofertilizers, bioenergy and biogas production											
	• To know about the application of biotechnology in solving global problems											
Course	At the end of the course, the student w	ill be able to										
Outcomes	CO1 gain knowledge on the different	t global environme	ntal K1,K2									
	problems and their risks	Co.										
	CO2 understand the cause of water j	pollution and the wa	ays K2									
	to control it											
	CO3 learn about solid waste	management and	the K3									
	production of diotertifizers and	l blogas										
	CO4 gain knowledge on bioremedia	ation techniques an	d its K2									
	importance	tabralagy applicat	tions K2									
	such as biopesticides and biop	astics	tions K 2									
Unit I	Environmental issues: Environment	– Basic Concepts a	and Issues. Environmental									
	Pollution – types of pollution; sources	s and effect, Globa	l environmental problems:									
	Ozone depletion, UV-B, Green House E	ffect and Acid rain	•									
Unit II	Water Pollution and its control: Sou	rces of water pollut	tion, Physico chemical and									
	biological characteristics of water, Nat	ional and internatio	nal standards for Drinking									
	water, standards for waste water dispos	for water managem	e water treatment, primary,									
	pollution waste water collection and	biotechnological	approach for waste water									
	treatment process.	e e lo contrologicar a	approach for waste water									
Unit III	Solid waste management: Sources, co	ollection and disposa	al techniques. Composting,									
	vermicomposting, incineration etc., C	Organic farming, R	enewable energy sources,									
	Bioenergy, Biogas production, biodiesel	•										
Unit IV	Bioremediation: Types of bioremedia	tion, Bioventing, m	nicrobes in biodegradation,									
	Nicropial degradation of Aenobiotics	and waste land	-on pollution, pesticides									
	mechanism.	and waste failu.	i nytoremetration and its									
Unit V	Application of Biotechnology: Bio	pesticides in Inter	grated pest management.									
•	Biofertilisers, mycorrhizae, Bioplastics	, biomineralization,	Biodiversity conservation.									
	Gene Bank.											

References	Text Books										
	1. B.K.Sharma. Environmental Chemistry, Krishna Prakashan Media (P)Limited.										
	2019.										
	2. Pramod Kumar, Vipin Kumar, Pravin Kumar Sachan, Environmental										
	Biotechnology, Publisher WPI Publishing,2019										
	3. Daniel Vallero, Environmental Biotechnology: A Biosystems										
	Approach, Publisher Elvesier, 2015.										
	References Books										
	1. Pramod Kumar, Vipin Kumar, Environmental Biotechnology, Publisher										
	Woodhead Publishing India,2018										
	2. S.V.S Rana, Environmental Biotechnology, Publisher Rastogi Publications, 2014										
E-	1. https://www.eartheclipse.com/energy/bioremediation-types-uses-										
reference	techniques.html										
links:	2. https://www.aftermath.com/content/types-of-bioremediation/										
	3. https://www.vedantu.com/chemistry/effects-of-ozone-layer-depletion										
	4. https://www.conserve-energy-future.com/organic-farming-benefits.php										
	5. https://agritech.tnau.ac.in/org_farm/orgfarm_introduction.html										

Mapping of COs with POs & PSOs:													
CO				5 P	0 _		20	55			PSO		
	1	2	3	4	5	6	7	8	1	2	3	4	5
CO1	S	S	S	S	Μ	S	S	S	S	S	Μ	Μ	S
CO2	S	S	S	S	Μ	S	S	S	S	S	М	М	S
CO3	S	S	S	S	M	S	S	S >	S	S	Μ	Μ	S
CO4	S	S	S	S	M	S	S	S	S	S	Μ	Μ	S
CO5	S	S	S	S	Μ	S	S 3	S	S	S	Μ	Μ	S

Strongly Correlating (S) - 3 marks; Weakly Correlating (W) - 1 mark;

Moderately Correlating (M) - 2 marks No Correlation(N) - 0 mark

M.PHIL BIOTECHNOLOGY MTWU SYLLABUS 2021 ONWARDS

Course	CORE IV-SPECIAL PAPER V											
Title &	APPLIED MICROBIOLOGY - M21BTT21											
Code		Comostor II	Credites 4	II.oung/moolege 10								
Semester	V1.D.	Semester-11	Credits:4	Hours/weeks: 10								
Lovel	K1. KCall K2. Understand											
Level	K2:01	nnly										
Learning	• To know about the scope and importance of Microbial biotechnology											
Objective	 To understand the techniques in the production of proteins and enzymes 											
o Sjeen e	from microbes											
	•	• To gain knowledge in microbial biomass production for different										
		applications										
	•	To understand the applications o	f microbes in env	ironmental applications								
	•	To learn the use of microbes in r	netabolic engineer	ring								
Course	At the	end of the course, the student wil	be able to	-								
Outcomes	CO1	learn the isolation and preservation	on of industrially	K1,K2								
		important microorganisms										
	CO2	2 gain knowledge on protein and enzyme production K2										
		from pathogenic microorganism										
	CO3	know about utilization of microbial biomass for the K2										
		production of commercially important bio-products										
	CO4	acquire knowledge on preparation of inoculants and K2,K3										
	C05	composting										
	005	biotechnology and in environmental applications										
Unit I	Micro	bial biotechnology: scope and tech	niques. Bioprospe	cting of microbial								
	diversi	ty, Isolation and preservation of inc	lustrially importan	t microorganisms.								
	Genom	nics, Proteomics, Metabolomics, me	etagenomics.	-								
Unit II	Medic	al microbiology: methods of i	solation of patho	ogenic organisms; Insulin								
	produc	tion. Production of proteins and	d enzymes in ba	acteria, yeast and fungus,								
II	recomt	binant and synthetic vaccines. Micr	obial polysaccharie	des and polyesters.								
Unit III	(lignoc	cellulose biodegradation) ethan	ation of plant of	amino acids antibiotics								
	Biotrar	isformation of steroid and non stero	oid compounds, me	etabolic engineering								
Unit IV	Nitrog	en fixation: Biology of nitrogen	fixation, preparat	ion of different, Types of								
	inocula	ants (nitrogen fixers phosphat	e solubilizers,	plant growth promoting								
	rhizoba	acteria, PGPR, composting.										
Unit V	Micro	bes and its Environmental Applic	cations: Introducti	on to the use of microbes in								
	enviroi	nmental applications, Bioreme	diation, bioauge	mntation, Bioemulsifiers,								
	fuels ()	Methane Hydrogen)	ecovery (MEOR),	leaching of ores. Microbial								
		victuale, rigurogenij										

Text Books
1. R.C.Dubey, A Textbook Of Microbiology, Publisher SChand 2011
 Madigan Michael T, Martinko John M., Bender Kelly S. 2017.Biology of Microorganisms. 14th Edition, Publisher Pearson Educatio, 2017. Sarafaraz Ahmad, A Textbook of Applied Microbiology, PublisherAnmol Publications Pvt Ltd,2011
References Books
1.V.S. Randhawa, Textbook Of Microbiology, Peepee Publishers and Distributors, 2019
2.Jeffrey C. Pommerville, Fundamentals of Microbiology.15 th Edition, Publisher Jones and Bartlette, 2018.
3.Gerald J.Tortora, Microbiology, 11 th Edition, Publisher Pearson Education. 2016.
1.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC309047/
2.https://www.scientificpub.com/upload/pdf/758.pdf
3.https://www.britannica.com/science/nitrogen-fixation
4.https://www.degruyter.com/document/doi/10.1515/biol-2020-0099/html

CO	PO							PSO					
	1	2	3	4	5	6	7	8	1	2	3	4	5
CO1	S	S	S	S	S	S	S	S	S	S	Μ	S	S
CO2	S	S	S	M	S	S	S	S >	S	S	S	Μ	S
CO3	S	S	S	S	Μ	S	S	S	S	S	Μ	Μ	S
CO4	S	S	S	S	Μ	S	S Z	S	S	S	S	Μ	S
CO5	S	S	S	M	M	S	SO	S	S	S	Μ	Μ	S

A S

812BL

Strongly Correlating (S) - 3 marks; Moderately Correlating (M) - 2 marks Weakly Correlating (W) - 1 mark; No Correlation(N) - 0 mark

Course	CORE IV-SPECIAL PAPER VI											
Title &	FUNGAL BIOTECHNOLOGY - M21BTT21											
Code		Somostor II	Credite: 4	Hours/wooks: 10								
Cognitivo	K1.Pa	Semester-II	Cleuns:4	nours/weeks: 10								
Level	K1.Ke K2·Un	aderstand										
	K3: A	pplv										
Learning	• To know about the morphology, ecology and genetics of fungi											
Objective	• To learn about mycotoxins and fungal diseases											
	• To acquire knowledge on handling and maintenance of fungi											
	•	• To know about the methods to diagnose fungal diseases										
	•	To gain knowledge on fungal me	tabolites and thei	r applications								
Course	At the	end of the course, the student will	be able to									
Outcomes	CO1	learn about the morphology, eco	logy, genetics and	d K1,K2								
	~ ~ ~	cultivation of edible fungi										
	CO2 understand the principles of systemic mycology and K2											
	CO3	tungal diseases in man and animals										
	005	storage of fungal cultures										
	CO4	Storage of fungal cultures										
	04	infections K2										
	CO5	acquire knowledge on the techniques to produce K1,K2										
		commercially important fungal r	netabolites									
Unit I	Introduction to Mycology or fungi: Life cycle – classification –											
	Morphology.Ecology of Fungi – Replication – Genetics of Fungi - Fungal organelles											
Init II	and functions. Mushroom – earbie, poisonous, Cultivation. Anthungal Agents.											
	Cutaneous. Fungal Disease in man and Animals.											
Unit III	Fungal	Guidelines: Handling of Fungal	Strains – Maintena	ance – Subculture – Storage								
	– Steri	lization of different materials use	d in animal cell of	culture, Aseptic concepts –								
	Safety	Measures – Ethical issues.										
Unit IV	Fungal	I Immunity: Immunity to fungal	infection – Yeast	of Medicinal Importance -								
	Newer	methods in Diagnostic Mycology.										
Unit V	Funga	I Metabolites: Novel Fungal Pro	ducts – Secondar	y Metabolites – Pigments-								
	Types -	- Extraction - Somatic Hybridizat	ion – Protoplast F	usion in Fungi. Mutation in								
	Fungi.											
References	Text B	ooks	Duin a ta ta ta ta	ita Duran Duine (
	1. Peter	rsen, Jens, The Kingdom of Fungi,	Princeton Univers	my press, princeton, NJ.								
	2. Erro	Reiss Fundamental Medical Myc	ology.Wiley.2011									
	3. B.R.	Vashista. Fungi, Chand & Co, New	w Delhi. 2016.									

	References Books							
	1.D. R. Arora, Medical Mycology, Publisher CBS Publishers & Distributors, 2014							
	2.Sarwat Parvez, Morphological Guide of Human and Animal Pathogenic Fungi &							
	Medical Mycology Lab Manual, 2019							
	3.Kee Peng Ng, A Guide to the Study of Basic Medical Mycology, Publisher							
	Partridge,2014							
Е-	1.https://www.sciencedirect.com/science/article/pii/S1198743X14630767							
reference	2.https://www.nature.com/articles/s41579-018-0121-1							
links:	3.https://www.microscopemaster.com/fungi.html							
	4.http://www.mycotoxins.info/mycotoxins/mycotoxins-definition/							

CO	РО								PSO					
	1	2	3	4	5	8 6 511 <i>i</i>	7.	8	1	2	3	4	5	
CO1	S	S	S	S	S	S	So	S	S	S	S	Μ	S	
CO2	S	S	S	SS	SS	ESUA	S	S	S	S	S	S	S	
CO3	S	S	S	S	S	S	SS	S	S	S	S	Μ	S	
CO4	S	S	S	S	S	S	S Z	S	S	S	Μ	Μ	S	
CO5	S	S	S	M	S	S	S C	S 9	S	S	Μ	Μ	S	

Strongly Correlating (S) - 3 marks; Weakly Correlating (W) - 1 mark; Moderately Correlating (M) - 2 marks No Correlation (N) - 0 mark

